Machine learning

10 Best Databases for Machine Learning & AI

Databases are fundamental to training all sorts of machine learning and artificial intelligence (AI) models. Over the last two decades, there has been an explosion of datasets available on the market, making it far more challenging to choose the right one for your tasks. At the same time, the larger number of datasets means you can find the perfect fit for whichever application you’re aiming towards.

Here’s a list of the 10 best databases for machine learning & AI:

1. MySQL

Powered by Oracle, MySQL is one of the most popular databases on the market. Created in 1995, it has consistently been one of the top open-source relational database management systems (RDBMS) used by major companies like Facebook, Twitter, Uber, and Youtube.

What led to its rise in popularity? For one, MySQL offers enterprise-grade gestures and a free, flexible community license. It also has an upgraded commercial license and focuses on robustness and stability.

Here are some of the main advantages of MySQL:

  • Data security layers to protect sensitive data.
  • Scalability for when there are large amounts of data.
  • Open source RDBMS with two separate licensing models.
  • Multi-master ACID transactions through MySQL Cluster.
  • Supports both structured data (SQL) and semi-structured data (JSON).

2. Apache Cassandra

Another top machine learning and AI database is Apache Cassandra, which is an open-source and highly scalable NoSQL database management system. Apache Cassandra was designed with the aim of processing massive amounts of data extremely quickly. The database is also used by big names like Instagram, Netflix, and Reddit.

Here are some of the main advantages of Apache Cassandra:

  • Handles massive volumes of data.
  • One of the most scalable databases with automatic sharding.
  • Offers linear horizontal scaling.
  • Decentralized database with multi-datacenter replication and automatic replication.
  • Fault tolerant by automatically replicating data to multiple nodes.

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

6 jours ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

6 jours ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

6 jours ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.