Intelligence Artificielle

4 Charts That Show Why AI Progress Is Unlikely to Slow Down

In the last ten years, AI systems have developed at rapid speed. From the breakthrough of besting a legendary player at the complex game Go in 2016, AI is now able to recognize images and speech better than humans, and pass tests including business school exams and Amazon coding interview questions.

Last week, during a U.S. Senate Judiciary Committee hearing about regulating AI, Senator Richard Blumenthal of Connecticut described the reaction of his constituents to recent advances in AI. “The word that has been used repeatedly is scary.”

The Subcommittee on Privacy, Technology, and the Law overseeing the meeting heard testimonies from three expert witnesses, who stressed the pace of progress in AI. One of those witnesses, Dario Amodei, CEO of prominent AI company Anthropic, said that “the single most important thing to understand about AI is how fast it is moving.”

It’s often thought that scientific and technological progress is fundamentally unpredictable, and is driven by flashes of insight that are clearer in hindsight. But progress in the capabilities of AI systems is predictably driven by progress in three inputs—compute, data, and algorithms. Much of the progress of the last 70 years has been a result of researchers training their AI systems using greater computational processing power, often referred to as “compute”, feeding the systems more data, or coming up with algorithmic hacks that effectively decrease the amount of compute or data needed to get the same results. Understanding how these three factors have driven AI progress in the past is key to understanding why most people working in AI don’t expect progress to slow down any time soon.

Source

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.