Machine learning

5 conseils pour éviter le piège du Machine Learning

Le Machine Learning n’est pas une baguette magique – beaucoup d’entreprises l’ont appris à leurs dépens. Il est possible d’obtenir de très bons résultats, à condition de respecter quelques principes. Et de bien comprendre que le ML et les data scientists ne sont qu’un maillon d’une chaîne beaucoup plus vaste d’un produit ML réussi.

“ Comment ça, on ne fait pas de machine learning, nous ?” Combien d’équipes data ont eu droit à cette question ? Employé à bon escient, le machine learning peut accomplir des prouesses. D’où cette question fréquente de la part des directions générales.

Mais pour certains usages, ou dans certains contextes, le résultat sera nul, puisque l’entreprise aura investi de l’argent, sans gain de ROI. Voire très négatif, si la solution créée ajoute de la frustration dans le parcours utilisateur, et démotive les équipes internes. Malheureusement, dans la grande majorité des cas, c’est ce qui attend les projets de machine learning.

D’après Venture Beat, 87% des projets de Data Science ne vont jamais en production. Quant à ceux en production, peu d’entre eux rapportent véritablement des gains. Selon une étude MITxBCG, seules 10% des entreprises qui l’ont mise en place obtiennent des bénéfices financiers avec l’IA. Or, ces projets continuent de coûter de l’argent.

Entre les entreprises qui sont persuadées qu’il faut absolument faire du machine learning, parce que tout le monde le fait (effet FOMO, fear of missing out), et des acteurs qui forment à la hâte des data scientists en leur promettant monts et merveilles, l’emballement est réel ; les résultats, beaucoup moins.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…

2 jours ago

Cybersécurité des transports urbains : 123 incidents traités par l’ANSSI en cinq ans

L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…

2 jours ago

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

4 jours ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

5 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

5 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

5 jours ago

This website uses cookies.