Intelligence Artificielle

Adoption Of Generative AI: What Should Enterprises Consider?

ChatGPT and Dalle-E are the talks of the town as the new shiny object that could potentially disrupt Google’s hegemony. The hype cycle, as usual, is high. AI dominated conversations around tech at this year’s World Economic Forum in Davos, Switzerland. Even at this year’s CES trade show, hundreds of exhibitors were listed under the show’s artificial intelligence category—double those categorized as metaverse, cryptocurrency and blockchain combined.

There is no denying the strength that generative AI is demonstrating. We must, however, take it with a pinch of salt. One of the core concerns is that it is a massive model with 175 billion parameters. Therefore, it’s uncertain what the budget impact would be to use it. Some new research from DeepMind aims to reduce the size of these models and, subsequently, the costs, which will likely impact enterprise-level adoption of these tools significantly.

From generative AI’s implicit biases to the fact that its responses depend on the language patterns it has learned rather than any world observations, there are several reasons to be skeptical of the current state of generative AI. To ensure this new technology is approached with caution, it is essential to thoroughly evaluate how it can be incorporated into your company’s processes.

Enterprises that are deliberating on adopting AI into their businesses should be cautious in adopting generative technologies. Ideally, one would want to use vendor APIs, but there are issues related to cost and customer data privacy. Therefore, the best approach, for now, is to start with publicly available data such as documentation or marketing collaterals. This can be used to experiment with vendor services to front documentation with a chatbot, introduce a writing assistant for marketing, etc.

Source

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.