bias ai
If you’ve been online much recently, chances are you’ve seen some of the fantastical imagery created by text-to-image generators such as Midjourney and DALL-E 2. This includes everything from the naturalistic (think a soccer player’s headshot) to the surreal (think a dog in space).
Creating images using AI generators has never been simpler. At the same time, however, these outputs can reproduce biases and deepen inequalities, as our latest research shows.
AI-based image generators use machine-learning models that take a text input and produce one or more images matching the description. Training these models requires massive datasets with millions of images.
Although Midjourney is opaque about the exact way its algorithms work, most AI image generators use a process called diffusion. Diffusion models work by adding random “noise” to training data, and then learning to recover the data by removing this noise. The model repeats this process until it has an image that matches the prompt.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.