In a joint effort between the Massachusetts Institute of Technology (MIT) and other U.S. institutions of higher education, scientists have shown off an AI system with the ability to pick up on the nuances of human language with relative ease. In addition to being able to learn lower-level language patterns automatically, this model is also capable of automatically learning higher-level language patterns that can apply to numerous languages.

The researchers trained and evaluated the model using problems from 58 distinct language-specific linguistics textbooks. Each task contained a list of words with appropriate word-form modifications. For 60 per cent of the problems, the model was able to provide a correct set of rules to explain these word-form modifications.

This technique could be applied to the study of linguistic hypotheses and the investigation of minor parallels between the ways in which distinct languages modify words. The system discovers models that can be easily comprehended by people, and it learns these models from modest amounts of data, such as a few dozen words.

Additionally, the system makes use of numerous tiny datasets rather than a single large one. This is closer to how scientists propose hypotheses, which is to look at numerous related datasets and develop models to explain phenomena across those datasets.

The researchers chose to investigate the relationship between phonology and morphology in their endeavour to create an AI system that could automatically train a model from numerous related datasets (the study of word structure).

The researchers utilised a machine-learning method called Bayesian Programme Learning to create a model that could learn grammar or a set of rules for putting words together. Using this method, the model creates a computer programme to address a challenge.

The grammar that the model believes is most likely to explain the words and their meanings in a linguistics problem is known as the programme. They created the model using Sketch, a well-known software synthesiser created by Solar-Lezama at MIT.

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

3 jours ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

3 jours ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

3 jours ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

4 jours ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

4 jours ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

4 jours ago

This website uses cookies.