Researchers have used a machine learning algorithm to identify the top factors that can predict an adolescent’s risk of self-harm and attempting suicide. They say their model is more accurate than existing risk predictors and could be used to provide individualized care to vulnerable patients.
Adolescence is a critical formative period. Physical, emotional, and social changes can make adolescents vulnerable to mental health problems, including suicide attempts and self-harm. According to the Australian Institute of Health and Welfare (AIHW), suicide is the leading cause of death amongst Australians aged 15 to 24. In the US, the Centers for Disease Control and Prevention (CDC) lists it as the second leading cause for 10-to-14-year-olds.
The standard approach for predicting suicide or self-harm relies on past suicide or self-harm attempts as the only risk factor, which can be unreliable. Now, researchers led by the University of New South Wales Sydney have used machine learning (ML) to accurately identify the top factors that place adolescents at increased risk of suicide and self-harm.
“Sometimes we need to digest and process a lot of information that would be beyond the ability of the clinician,” said Ping-I Daniel Lin, corresponding author of the study. “That’s the reason we are tapping into machine learning algorithms.”
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.