Many systems like autonomous vehicle fleets and drone swarms can be modeled as Multi-Agent Reinforcement Learning (MARL) tasks, which deal with how multiple machines can learn to collaborate, coordinate, compete, and collectively learn. It’s been shown that machine learning algorithms — particularly reinforcement learning algorithms — are well-suited to MARL tasks. But it’s often challenging to efficiently scale them up to hundreds or even thousands of machines.
One solution is a technique called centralized training and decentralized execution (CTDE), which allows an algorithm to train using data from multiple machines but make predictions for each machine individually (e.g., like when a driverless car should turn left). QMIX is a popular algorithm that implements CTDE, and many research groups claim to have designed QMIX algorithms that perform well on difficult benchmarks. But a new paper claims that these algorithms’ improvements might only be the result of code optimizations or “tricks” rather than design innovations.
Source : https://venturebeat.com/2021/08/20/ai-weekly-ai-research-still-has-a-reproducibility-problem
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…
Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…
This website uses cookies.