Intelligence Artificielle

AI to unpick liability in autonomous vehicle incidents

Autonomous trucks, operating at least at SAE Level 4 are plying the roads in Texas, California and elsewhere, and driverless buses are on the way. While self-driving passenger vehicles are slightly behind, they will be here—en masse— very soon, experts say.

Who or what is at fault?

And while many believe autonomous vehicles will result in greater road safety, no technology is perfect. Even with their currently limited numbers on the road, self-driving vehicles have been involved in collisions and can, just like any other vehicles, sustain physical damage, even from minor incidents. As more autonomous vehicles take to the road, the number of incidents in which they are involved will grow. Questions will arise about the viability of the vehicles themselves, as well as about the quality of their software or the control systems that guide them.

And those questions will be exacerbated by the fact that autonomous vehicles will be sharing the road with driver-controlled vehicles, pedestrians, bikes, motorcycles, electric scooters perhaps even futuristic hoverboards. At that point, the lawyers will go to work; attorneys, courts, and owners will have to grapple with issues of responsibility. But to determine responsibility for an accident—ie, who pays—they will have to delve deeply into the different “responsible parties” that may have caused it.

The ideal inspection for autonomous vehicles combines the deep analysis capabilities of AI systems with human supervision

Was there a problem with the vehicle’s on-board software or with the transmission of instructions from the central server? Did the vehicle owner fail to apply a mandatory software update? Was the problem with the vehicle itself, with a flaw developing because of a manufacturing issue? Was the incident due to a problem in the 5G communication network on which autonomous vehicles will rely? Was it due to nothing more than a flat tyre, and if so, did the owner fail to inflate the tyre properly?

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.