ai health
As tech companies begin to weave AI into all their products and all of our lives, the architects of this revolutionary technology often can’t predict or explain their systems’ behavior.
Why it matters: This may be the scariest aspect of today’s AI boom — and it’s common knowledge among AI’s builders, though not widely understood by everyone else.
What’s happening: For decades, we’ve used computer systems that, given the same input, provide the same output.
The element of randomness in generative AI operates on a scale — involving up to trillions of variables — that makes it challenging to dissect how the technology arrives at a particular answer.
Driving the news: Four researchers published a paper Thursday showing that users can defeat « guardrails » meant to bar AI systems from, for instance, explaining « how to make a bomb. »
Between the lines: Since AI developers can’t easily explain the systems’ behavior, their field today operates as much by oral tradition and shared tricks as by hard science.
Of note: These systems can be tuned to be relatively more or less random — to provide wider or narrower variation in their responses.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.