ai health
As tech companies begin to weave AI into all their products and all of our lives, the architects of this revolutionary technology often can’t predict or explain their systems’ behavior.
Why it matters: This may be the scariest aspect of today’s AI boom — and it’s common knowledge among AI’s builders, though not widely understood by everyone else.
What’s happening: For decades, we’ve used computer systems that, given the same input, provide the same output.
The element of randomness in generative AI operates on a scale — involving up to trillions of variables — that makes it challenging to dissect how the technology arrives at a particular answer.
Driving the news: Four researchers published a paper Thursday showing that users can defeat « guardrails » meant to bar AI systems from, for instance, explaining « how to make a bomb. »
Between the lines: Since AI developers can’t easily explain the systems’ behavior, their field today operates as much by oral tradition and shared tricks as by hard science.
Of note: These systems can be tuned to be relatively more or less random — to provide wider or narrower variation in their responses.
Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…
Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…
La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…
En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…
Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…
"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…
This website uses cookies.