With many industries interested in using machine learning algorithms to improve efficiency and reduce the costs of their operations, ML products have become one of the main competition fronts between big tech companies. The past few years have seen an assortment of services that facilitate the creation, training, fine-tuning, and deployment of machine learning models for different organizations.
Not to be outdone by others, Amazon announced new machine learning products at the AWS re:Invent conference this year, including a no-code ML tool, a data-labeling platform, and a service for optimizing the deployment of machine learning models. The benefits of the new tools are two-fold. For organizations that don’t have the in-house talent and resources to develop their own ML models, these tools will give them the opportunity to get started with machine learning and put their data stores to productive use. For organizations that are already running machine learning projects, the new applied ML tools will provide the opportunity to increase the speed and productivity of the machine learning development cycle.
Qu’est-ce que la cybersécurité ? Définition, enjeux et bonnes pratiques en 2025 La cybersécurité est…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
This website uses cookies.