Supervised Deep Learning is similar to concept learning in humans and animals, the difference being that the student in the former case is a computational network. Supervised deep learning frameworks are trained using well-labelled data. It teaches the learning algorithm to generalise from the training data and to implement in unseen situations.
After completing the training process, the model is tested on a subset of the testing set to predict the output. Thus, datasets containing inputs and correct outputs become critical as they help the model learn faster.
Regression and classification are two subfields of supervised machine learning.
Regression always predicts a continuous value using the training dataset to determine it. These outputs have a probabilistic interpretation and allow for the algorithm to be regularised for over-fitting. However, it can underperform in the presence of multiple non-linear decision boundaries. When applied to complex relationships, the method fails due to the lack of flexibility.
Classification, as the name suggests, allows data to be grouped in a class. It comes in handy in practice and is beneficial for large datasets. However, sometimes unconstrained decision trees– a widely used example of classification– are prone to overfitting.
Three Supervised Deep Learning algorithms are:
Supervised learning can help train models to predict results based on prior experience. It is computationally less complex, and a highly accurate and trustworthy method. It is used when a user has an exact idea about the class of projects. It helps one to optimise the performance of an algorithm using experience.
It is widely used to solve complex real-world problems like computer vision, spam filtering, fraud detection, voice recognition, and more. A famous example would be the employment of supervised learning to develop convolutional neural networks by Tesla to solve its Computer Vision problem for successful autopilot implementation in its cars.
Source : https://analyticsindiamag.com/an-introduction-to-supervised-deep-learning-for-non-techies/
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.