Intelligence Artificielle

Are AI models doomed to always hallucinate?

Large language models (LLMs) like OpenAI’s ChatGPT all suffer from the same problem: they make stuff up.

The mistakes range from strange and innocuous — like claiming that the Golden Gate Bridge was transported across Egypt in 2016 — to highly problematic, even dangerous.

A mayor in Australia recently threatened to sue OpenAI because ChatGPT mistakenly claimed he pleaded guilty in a major bribery scandal. Researchers have found that LLM hallucinations can be exploited to distribute malicious code packages to unsuspecting software developers. And LLMs frequently give bad mental health and medical advice, like that wine consumption can “prevent cancer.”

This tendency to invent “facts” is a phenomenon known as hallucination, and it happens because of the way today’s LLMs — and all generative AI models, for that matter — are developed and trained.

Training models

Generative AI models have no real intelligence — they’re statistical systems that predict words, images, speech, music or other data. Fed an enormous number of examples, usually sourced from the public web, AI models learn how likely data is to occur based on patterns, including the context of any surrounding data.

For example, given a typical email ending in the fragment “Looking forward…”, an LLM might complete it with “… to hearing back” — following the pattern of the countless emails it’s been trained on. It doesn’t mean the LLM is looking forward to anything.

“The current framework of training LLMs involves concealing, or ‘masking,’ previous words for context” and having the model predict which words should replace the concealed ones, Sebastian Berns, a Ph.D. researchers at Queen Mary University of London, told TechCrunch in an email interview. “This is conceptually similar to using predictive text in iOS and continually pressing one of the suggested next words.”

Source

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.