Intelligence Artificielle

Are We Ready for AI-Generated Code?

Autocompleted code is convenient and quick, but it may expose your organization to security and compliance risks.

In recent months, we’ve marveled at the quality of computer-generated faces, cat pictures, videos, essays, and even art. Artificial intelligence (AI) and machine learning (ML) have also quietly slipped into software development, with tools like GitHub Copilot, Tabnine, Polycode, and others taking the logical next step of putting existing code autocomplete functionality on AI steroids. Unlike cat pics, though, the origin, quality, and security of application code can have wide-reaching implications — and at least for security, research shows that the risk is real.

Prior academic research has already shown that GitHub Copilot often generates code with security vulnerabilities. More recently, hands-on analysis from Invicti security engineer Kadir Arslan showed that insecure code suggestions are still the rule rather than the exception with Copilot. Arslan found that suggestions for many common tasks included only the absolute bare bones, often taking the most basic and least secure route, and that accepting them without modification could result in functional but vulnerable applications.

A tool like Copilot is (by design) autocompletion turned up a notch, trained on open source code to suggest snippets that could be relevant in a similar context. This makes the quality and security of suggestions closely tied to the quality and security of the training set. So the bigger questions are not about Copilot or any other specific tool but about AI-generated software code in general.

It’s reasonable to assume Copilot is only the tip of the spear and that similar generators will become commonplace in the years ahead. This means we, the technology industry, need to start asking how such code is being generated, how it’s used, and who will take responsibility when things go wrong.

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.