Extracting the value of artificial intelligence requires gaining quick wins while developing at enterprise scale. Consider focusing on these key AI areas
It’s an exciting and scary time to be a technology leader: Exciting for the endless opportunities offered by rapidly evolving digital technologies – and scary due to the associated feeling of FOMO (fear of missing out).
Consider Artificial Intelligence (AI). Driven by the desire to tap unprecedented volumes of data for a broad array of real-world applications, many organizations see AI as a magic wand that CIOs can swing to generate customer delight and executive exhilaration.
CIOs know better, of course. The challenges that come with any new technology hit technologists harder and faster than the optimism driving it. This is especially true with AI and related areas such as machine learning (ML), data science, deep learning, natural language processing (NLP), and cognitive intelligence. Not only is talent scarce in these fields, but their vocabulary and application development are also different.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.