Researchers from the National Institutes of Health Clinical Center developed a new artificial intelligence (AI) model that analyzed various factors relating to pancreas health and fat levels using non-contrast abdominal CT images to detect type 2 diabetes risk.
The study, which was published in Radiology, evaluated 8,992 patients, of which 572 had type 2 diabetes mellitus, and 1,880 had dysglycemia. All patient screenings occurred between 2004 and 2016.
To build the model researchers used 471 images obtained from various datasets. They divided the photos into three categories: 424 for training, 8 for validation, and 39 for test sets.
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.