MachineLearning security
Nearly 75% of the world’s largest companies have already integrated AI and machine learning (ML) into their business strategies. As more and more companies — and their customers — gain increasing value from ML applications, organizations should be considering new security best practices to keep pace with the evolving technology landscape.
Companies that utilize dynamic or high-speed transactional data to build, train, or serve ML models today have an important opportunity to ensure their ML applications operate securely and as intended. A well-managed approach that takes into account a range of ML security considerations can detect, prevent, and mitigate potential threats while ensuring ML continues to deliver on its transformational potential.
ML security has the same goal as all cybersecurity measures: reducing the risk of sensitive data being exposed. If a bad actor interferes with your ML model or the data it uses, that model may output incorrect results that, at best, undermine the benefits of ML and, at worst, negatively impact your business or customers.
Comment reconnaître une attaque de phishing et s’en protéger Le phishing ou « hameçonnage »…
Qu’est-ce que la cybersécurité ? Définition, enjeux et bonnes pratiques en 2025 La cybersécurité est…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
This website uses cookies.