Intelligence Artificielle

Can This New A.I. Tool Help Detect Blood Poisoning?

The algorithm scans electronic records and may reduce sepsis deaths, but widespread adoption could be a challenge

Ten years ago, 12-year-old Rory Staunton dove for a ball in gym class and scraped his arm. He woke up the next day with a 104 F fever, so his parents took him to the pediatrician and eventually the emergency room. It was just the stomach flu, they were told. Three days later, Rory died of sepsis after bacteria from the scrape infiltrated his blood and triggered organ failure.

“How does that happen in a modern society?” his father, Ciaran Staunton, said in a recent interview with Undark.

Each year in the United States, sepsis kills over a quarter million people — more than stroke, diabetes, or lung cancer. One reason for all this carnage is that sepsis isn’t well understood, and if not detected in time, it’s essentially a death sentence. Consequently, much research has focused on catching sepsis early, but the disease’s complexity has plagued existing clinical support systems — electronic tools that use pop-up alerts to improve patient care — with low accuracy and high rates of false alarm.

That may soon change. Back in July, Johns Hopkins researchers published a trio of studies in Nature Medicine and npj Digital Medicine, showcasing an early warning system that uses artificial intelligence. The system caught 82 percent of sepsis cases and reduced deaths by nearly 20 percent. While AI — in this case, machine learning — has long promised to improve health care, most studies demonstrating its benefits have been conducted on historical datasets. Sources told Undark that, to the best of their knowledge, when used on patients in real-time, no AI algorithm has shown success at scale. Suchi Saria, director of the Machine Learning and Health Care Lab at Johns Hopkins University and senior author of the studies, said the novelty of this research is how “AI is implemented at the bedside, used by thousands of providers, and where we’re seeing lives saved.”

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.