000000072333
Les bugs sont inévitables mais plus tard on les détecte, par exemple après le déploiement d’une application, plus leur résolution sera difficile à réaliser et plus leur coût sera élevé. Or, certains types de séquences dans le code d’un projet logiciel comportent un risque plus élevé que d’autres de générer un bug. Et ces séquences peuvent être apprises par un algorithme de classification qui pourra ensuite être utilisé pour prédire la probabilité d’un bug dans un fichier.
Pour mettre en oeuvre ces actions de prévention, Altran, société française d’ingénierie IT (récemment rachetée par Capgemini), a développé Code Defect AI, un classificateur basé sur l’apprentissage machine pour repérer dans les projets gérés sur GitHub les fichiers à haut risque de bugs. L’outil fournit aux développeurs les explications et les facteurs qui ont permis de le déterminer et suggère les tests qui permettront de les diagnostiquer et de les corriger. Les arbres décisionnels figurent parmi les techniques de machine learning qu’il utilise.
Source : Code Defect AI prédit les risques de bugs dans le code
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…
Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…
This website uses cookies.