Intelligence Artificielle

Could an algorithm predict the next pandemic?

Machine learning could help to identify the viruses most likely to spill over from animals to people and cause future pandemics.

In February 2021, seven Russian poultry-farm workers were reported to have been infected with H5N8 avian influenza. This subtype of bird flu had never been known to infect people before, and the virus’s genetic sequence was quickly uploaded to the genetic data repository GISAID. For Colin Carlson, a biologist at Georgetown University in Washington DC, it presented an opportunity. “I immediately thought, ‘I want to run this through FluLeap’,” he says.

FluLeap is a machine-learning algorithm that uses sequence data to classify influenza viruses as either avian or human. The model had been trained on a huge number of influenza genomes — including examples of H5N8 — to learn the differences between those that infect people and those that infect birds. But the model had never seen an H5N8 virus categorized as human, and Carlson was curious to see what it made of this new subtype.

Somewhat surprisingly, the model identified it as human with 99.7% confidence. Rather than simply reiterating patterns in its training data, such as the fact that H5N8 viruses do not typically infect people, the model seemed to have inferred some biological signature of compatibility with humans. “It’s stunning that the model worked,” says Carlson. “But it’s one data point; it would be more stunning if I could do it a thousand more times.”

The zoonotic process of viruses jumping from wildlife to people causes most pandemics. As climate change and human encroachment on animal habitats increase the frequency of these events, understanding zoonoses is crucial to efforts to prevent pandemics, or at least to be better prepared.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

1 jour ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

2 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

3 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

3 jours ago

Vulnérabilités des objets connectés : comment protéger efficacement son réseau en 2025

📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…

6 jours ago

Cybersécurité : comment détecter, réagir et se protéger efficacement en 2025

Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…

6 jours ago

This website uses cookies.