Intelligence Artificielle

Could an algorithm predict the next pandemic?

Machine learning could help to identify the viruses most likely to spill over from animals to people and cause future pandemics.

In February 2021, seven Russian poultry-farm workers were reported to have been infected with H5N8 avian influenza. This subtype of bird flu had never been known to infect people before, and the virus’s genetic sequence was quickly uploaded to the genetic data repository GISAID. For Colin Carlson, a biologist at Georgetown University in Washington DC, it presented an opportunity. “I immediately thought, ‘I want to run this through FluLeap’,” he says.

FluLeap is a machine-learning algorithm that uses sequence data to classify influenza viruses as either avian or human. The model had been trained on a huge number of influenza genomes — including examples of H5N8 — to learn the differences between those that infect people and those that infect birds. But the model had never seen an H5N8 virus categorized as human, and Carlson was curious to see what it made of this new subtype.

Somewhat surprisingly, the model identified it as human with 99.7% confidence. Rather than simply reiterating patterns in its training data, such as the fact that H5N8 viruses do not typically infect people, the model seemed to have inferred some biological signature of compatibility with humans. “It’s stunning that the model worked,” says Carlson. “But it’s one data point; it would be more stunning if I could do it a thousand more times.”

The zoonotic process of viruses jumping from wildlife to people causes most pandemics. As climate change and human encroachment on animal habitats increase the frequency of these events, understanding zoonoses is crucial to efforts to prevent pandemics, or at least to be better prepared.

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

1 semaine ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

1 semaine ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

1 semaine ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

1 semaine ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

1 semaine ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

1 semaine ago

This website uses cookies.