cybersécurité

Cyber Attacks Machine Learning Systems Are Vulnerable To

Based on a recently published NCC (National Computing Center) whitepaper, the growing number of organizations creating and deploying machine learning solutions is highly concerning. The aforementioned whitepaper provides a list of attack types which might be carried out against machine learning systems.

According to an InfoQ overview, machine learning systems are subject to specific forms of attacks in addition to more traditional attacks that may attempt to exploit infrastructure or applications bugs, or other kinds of issues.

The first risk that machine learning models face is that they contain code that is executed when the model is loaded or when a particular condition is met. This means an attacker may craft a model containing malicious code and have it executed for a variety of purposes, including leaking sensitive information, installing malware, producing output errors, and so on.

Downloaded models should be treated in the same way as downloaded code; the supply chain should be verified, the content should be cryptographically signed, and the models should be scanned for malware if possible. The NCC Group claims to have successfully exploited this kind of vulnerability.

An additional type of attack that might come into play is adversarial perturbation attacks, where an attacker may craft an input that causes the machine learning system to return results of their choice. This approach could be used to tamper with authentication systems, content filters, and so on.

Membership inference attacks threaten this field too. These attacks are able to expose if an input was part of the model training set. Model inversion attacks allow attackers to gather sensitive data in the training set; data poisoning backdoor attacks consist in inserting specific items into the training data of a system to cause it to respond in some predefined way.

Veille-cyber

Recent Posts

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…

2 jours ago

Cybersécurité des transports urbains : 123 incidents traités par l’ANSSI en cinq ans

L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…

2 jours ago

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

4 jours ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

5 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

6 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

6 jours ago

This website uses cookies.