Deep neural networks are known to learn opaque, uninterpretable representations that lie beyond the grasp of human understanding. As such, from both scientific and practical viewpoints, it is intriguing to explore what is actually being learned and how in the case of superhuman self-taught neural network agents such as AlphaZero.
In the new paper Acquisition of Chess Knowledge in AlphaZero, DeepMind and Google Brain researchers and former World Chess Champion Vladimir Kramnik explore how and to what extent human knowledge is acquired by AlphaZero and how chess concepts are represented in its network. They do this via comprehensive concept probing, behavioural analysis, and examination of AlphaZero’s activations.
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
Cybersécurité et PME : les risques à ne pas sous-estimer On pense souvent que seules…
Comment reconnaître une attaque de phishing et s’en protéger Le phishing ou « hameçonnage »…
Qu’est-ce que la cybersécurité ? Définition, enjeux et bonnes pratiques en 2025 La cybersécurité est…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
This website uses cookies.