Deep neural networks are known to learn opaque, uninterpretable representations that lie beyond the grasp of human understanding. As such, from both scientific and practical viewpoints, it is intriguing to explore what is actually being learned and how in the case of superhuman self-taught neural network agents such as AlphaZero.
In the new paper Acquisition of Chess Knowledge in AlphaZero, DeepMind and Google Brain researchers and former World Chess Champion Vladimir Kramnik explore how and to what extent human knowledge is acquired by AlphaZero and how chess concepts are represented in its network. They do this via comprehensive concept probing, behavioural analysis, and examination of AlphaZero’s activations.
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.