Intelligence Artificielle

DeepMind’s Demis Hassabis is AI’s grandmaster

Somewhere at his core — beneath the endless scroll of scientific awards, the hundreds of millions of dollars he’s earned as a technologist, and the weight of directing perhaps the most important AI company in the world — Demis Hassabis is a gamer.

Growing up in north London, the child of a Greek Cypriot father and a Chinese Singaporean mother, Hassabis was a child prodigy in chess from the age of 4. He began writing his own computer games at 8, created one of the first video games to use AI at 17, and founded his own video game company not long after graduating from Cambridge University at 20.

So perhaps it makes sense that Hassabis’s AI startup DeepMind, founded in 2010 and sold to Google just four years later, would achieve its first major successes with AI models that used deep reinforcement learning to rapidly master video games like Space Invaders and Q*bert without any knowledge of the actual rules.

That was followed with AlphaGo, which learned the ancient strategy board game of Go and would in 2017 defeat the world’s number one human player — an event that did perhaps more than anything else to awaken the world to the rapid progress of AI. New models could dominate a variety of games even faster, reducing the time and human intervention needed to acquire mastery.

Games are a logical playground for both AI models and for the men and women who design them. Games have clear rules and clear metrics for success and failure. When IBM’s Deep Blue defeated world chess champion Garry Kasparov in 1997, it was considered a major landmark in the advancement of AI. But whereas Deep Blue triumphed primarily thanks to sheer computational force, which enabled it to examine 200 million moves per second, the models Hassabis helped shepherd at DeepMind seemed capable of truly learning, at least within the bounds of the games.

But as useful as games are as a testing ground for AI capabilities, they’re limited in their application and usefulness in the far more messy real world. (An AI that can beat any human player in the strategy game Starcraft II, as DeepMind’s AlphaStar could, is neat, but won’t exactly change the world.)

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

5 jours ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

2 semaines ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

2 semaines ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

3 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

3 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

3 semaines ago

This website uses cookies.