Researchers argue that the national, centralized regulation of clinical artificial intelligence (AI) is not sufficient and instead propose a hybrid model of centralized and decentralized regulation.
In an opinion piece published in PLOS Digital Health, public health researchers at Harvard note that the increase in clinical AI applications, combined with the need to adapt applications to account for differences between local health systems, creates a significant challenge for regulators.
Currently, the US Food and Drug Administration (FDA) regulates clinical AI under the classification of software-based medical devices. Medical device approval is typically obtained via premarket clearance, de novo classification, or premarket approval. In practice, this usually involves the approval of a “static” model, meaning that any change in data, algorithm, or intended use after initial approval requires reapplication for approval. To receive approval, developers must demonstrate a model’s performance on an appropriately heterogeneous dataset.
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.