Researchers argue that the national, centralized regulation of clinical artificial intelligence (AI) is not sufficient and instead propose a hybrid model of centralized and decentralized regulation.
In an opinion piece published in PLOS Digital Health, public health researchers at Harvard note that the increase in clinical AI applications, combined with the need to adapt applications to account for differences between local health systems, creates a significant challenge for regulators.
Currently, the US Food and Drug Administration (FDA) regulates clinical AI under the classification of software-based medical devices. Medical device approval is typically obtained via premarket clearance, de novo classification, or premarket approval. In practice, this usually involves the approval of a “static” model, meaning that any change in data, algorithm, or intended use after initial approval requires reapplication for approval. To receive approval, developers must demonstrate a model’s performance on an appropriately heterogeneous dataset.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.