Machine learning tools are used in a variety of fields, from sales to medicine. But getting tech into the workplace is just one step — these tools are only successful if they’re integrated into workflows, and if people trust them enough to depend on them.
A key to successful adoption is back-and-forth dialogue between technology developers and end users, according to new research from MIT Sloan professorSara Singer of Stanford University, Ari Galper of Columbia University, and Deborah Viola of Westchester Medical Center. The paper was published in Health Care Management Review.
Deploying workplace tools is often seen as one-directional — developers make them and hand them off to users. This doesn’t work for machine learning tools, the researchers write, because of the data required to train machine learning models and the opacity of the models. Both developers and end users might not understand how time-intensive this process is, and how much patience and input is required.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.