Dr. Steven Gustafson is Noonum’s CTO and an AI scientist, passionate about solving hard problems while having fun and building great teams.
I’ve learned to recognize patterns for success while developing solutions using artificial intelligence for different industries like finance, healthcare, aviation and social media. In this article, I’ll share one pattern that reduces the risk of project failure in AI applications—identifying and validating business assumptions with internal resources or customers, then identifying and validating technical assumptions with external resources who are usually more capable to build AI prototypes efficiently and successfully.
First, identify the biggest business model assumption.
Behind every successful AI application is an idea from the business or the customer on how some process or decision could be improved. The business assumption is whether that improvement would be adopted and result in a significant enough improvement to justify the cost to change. Usually, someone in the business will see a better way, or someone in the business who works with a customer can see how the customer experience could be made better.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.