The world’s skewed gender bias is no longer gasping news. It is rigidly handcuffed into the social fabric through stereotypes and traditionally upheld norms. Such systems create divisive spaces, both socially and digitally. While these voids are glaringly visible in the socio-political vantage, they remain latent in the emerging futuristic technologies, primarily machine learning with Big data. With an enormous proportion of the population using online, digital services and networks today, we create several gigabytes of data every day. This in turn, is fueling the AI algorithms to become smarter with enhanced precision and quality outputs.
We are beginning to rely more heavily each day on algorithms globally for decision-making, concerning mortgage loan decisions, insurance risk, job shortlisting, assessments, setting bond amounts, sentencing recommendations, predictive policing, among so many others. More so, it now facilitates a majority of day-to-day experiences. It is estimated that AI will contribute about$15.7 Trillion to the world economy by 2030, out of which, about $6.6 Trillion will be delivered by increased productivity while the remaining $9.1 Trillion will be gained from consumption side-effects
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.