phishing
As AI’s popularity grows and its usability expands, thanks to generative AI’s continuous improvement model, it is also becoming more embedded in the threat actor’s arsenal.
To mitigate increasingly sophisticated AI phishing attacks, cybersecurity practitioners must both understand how cybercriminals are using the technology and embrace AI and machine learning for defensive purposes.
On the attack side, generative AI increases the effectiveness and impact of a variety of cyberthreats and phishing scams. Consider the following.
Generative AI can make traditional phishing attacks — via emails, direct messages and spurious websites — more realistic by eliminating spelling errors and grammatical mistakes and adopting convincingly professional writing styles.
Large language models (LLMs) can also absorb real-time information from news outlets, corporate websites and other sources. Incorporating of-the-moment details into phishing emails could both make the messages more believable and generate a sense of urgency that compels targets to act.
Finally, AI chatbots can create and spread business email compromise and other phishing campaigns at a much faster rate than humans ever could on their own, increasing the surface area of such attacks.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.