Google AI has launched GSPMD – General and Scalable Parallelization for ML Computation Graphs, to address scaling challenges. GSPMD is capable of scaling most deep learning network architectures and has been applied to many deep learning models which include GShard-M4, BigSSL, LaMDA, ViT, and MetNet-2. GSPMD has also been integrated into multiple ML frameworks, including TensorFlow and JAX, which use XLA as a shared compiler.
The solution separates the task of programming an ML model from the challenge of parallelization. It allows model developers to write programs as if they were run on a single device with very high memory and computation capacity. The user only needs to add a few lines of annotation code to a subset of critical tensors in the model code to indicate how to partition the tensors. With GSPMD, developers may employ different parallelism algorithms for different use cases without the need to reimplement the model.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.