When given a voice, workers genuinely appreciate AI at work

The first key finding was that when AI was deployed strategically like for professional development or to minimize annoying tasks–workers felt that AI made their jobs easier.

For example, customer service agents had to use AI-based software that monitored their calls and text chats with customers which monitored the agents’ tone of voice, speaking volume, and keywords to assess emotions and offer warnings to speak more quietly, slowly, or with less “emotional charge.”

When the prompts were used as coaching tools, rather than commands or performance metrics, workers appreciated the real-time tips. “Most employers can’t afford to hire dedicated coaches to listen to every employee’s calls and offer feedback, especially in real-time, so using AI-based tools to offer suggestions makes sense from a professional development and quality assurance standpoint,” Bell told me.

In other cases, AI freed up workers to focus on more interesting and higher-level tasks. Data annotators used AI-based software to speed up the tedious process of hand-labeling documents, audio, video, and image files with text so that it could be used by AI systems. The strong majority preferred working with software compared to data labeling manually.

 

  • High-road model: Employers using this model hire highly skilled workers that need to be paid more and invested in through upskilling, but this workforce is more capable and has the autonomy to make higher-level decisions. This group more often uses AI to augment their skills.
  • Churn model: Employers using this model hire less skilled workers who undergo high “churn” (rapid rate of hiring, firing, and attrition) as a core tenant of the business model. Bell told me that many of the technologies used to automate jobs or tasks are focused on churn model employers, rather than high-road employers.

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

3 semaines ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

3 semaines ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

3 semaines ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

3 semaines ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

3 semaines ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

3 semaines ago

This website uses cookies.