Governments and humanitarian groups can use machine learning algorithms and mobile phone data to get aid to those who need it most during a humanitarian crisis, we found in newly published research.
The simple idea behind this approach is that wealthy people use phones differently from poor people. Their phone calls and text messages follow different patterns, and they use different data plans, for example. Machine learning algorithms – which are fancy tools for pattern recognition – can be trained to recognize those differences and infer whether a given mobile subscriber is wealthy or poor.
As the COVID-19 pandemic spread in early 2020, our research team helped Togo’s Ministry of Digital Economy and GiveDirectly, a nonprofit that sends cash to people living in poverty, turn this insight into a new type of aid program.
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.