A novel investigation by STAT and the Massachusetts Institute of Technology found that subtle shifts in data fed into popular health care algorithms — used to warn caregivers of impending medical crises — can cause their accuracy to plummet over time, raising the prospect AI could do more harm than good in many hospitals.
In a monthslong experiment, STAT and MIT traced the performance of algorithms past their early days of peak performance into the grinding years that follow, when the hype has faded and they must prove their reliability to caregivers. Instead of transforming care, the algorithms withered in the face of fast-moving clinical conditions — unable to keep up with the pace of change.
Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…
Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…
La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…
En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…
Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…
"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…
This website uses cookies.