Synthetic data is an ecosystem for perfect data, showing promise in creating more capable and ethical AI models
“Is there data, and is it of sufficient diversity and quality to address my specific need?”
This is the question that many of today’s data and technology leaders have when creating a modern data architecture to support their company’s digital and AI transformations. While data may be the foundation for any AI project, there isn’t a clear-cut answer for how much of it you need to ensure a target performance. The difficulties associated with enterprise adoption could pose significant barriers to realizing the benefits of AI.
A single dataset may contain tens of millions of elements. With traditional approaches to AI projects, organizations are tasked with manually collecting and labeling data of this magnitude, which is time-consuming and costly, not to mention prone to human errors. This method has major disadvantages, as humans cannot label all the attributes a company may be interested in or need to power their AI project. Aside from the above limitations, real-world data presents a growing issue surrounding ethical use and privacy.
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.