Machine learning heavily relies on probability theory. Hence, managing uncertainty (read imperfect or incomplete information) is key to machine learning (ML) projects.
Ideally, deep learning makes it possible to produce dependable predictions on data from the same distribution the models were trained on. However, there are often disparities in the distribution of data on which the model was trained and to which a model is applied. For example, a 2018 study found that deep learning models trained to detect pneumonia in chest x-rays did not achieve the same degree of accuracy when they were evaluated on previously unseen data from hospitals.
Methods such as Gaussian processes are very helpful in data analysis and decision making. For instance, an autonomous car may use this information to decide whether it should brake or not.
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.