Machine learning heavily relies on probability theory. Hence, managing uncertainty (read imperfect or incomplete information) is key to machine learning (ML) projects.
Ideally, deep learning makes it possible to produce dependable predictions on data from the same distribution the models were trained on. However, there are often disparities in the distribution of data on which the model was trained and to which a model is applied. For example, a 2018 study found that deep learning models trained to detect pneumonia in chest x-rays did not achieve the same degree of accuracy when they were evaluated on previously unseen data from hospitals.
Methods such as Gaussian processes are very helpful in data analysis and decision making. For instance, an autonomous car may use this information to decide whether it should brake or not.
Comment reconnaître une attaque de phishing et s’en protéger Le phishing ou « hameçonnage »…
Qu’est-ce que la cybersécurité ? Définition, enjeux et bonnes pratiques en 2025 La cybersécurité est…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
This website uses cookies.