Explanation methods that help users determine whether to trust machine-learning model predictions can be less accurate for disadvantaged subgroups, a new study finds.

When the stakes are high, machine-learning models are sometimes used to aid human decision-makers. For instance, a model could predict which law school applicants are most likely to pass the bar exam to help an admissions officer determine which students should be accepted.

These models often have millions of parameters, so how they make predictions is nearly impossible for researchers to fully understand, let alone an admissions officer with no machine-learning experience. Researchers sometimes employ explanation methods that mimic a larger model by creating simple approximations of its predictions. These approximations, which are far easier to understand, help users determine whether to trust the model’s predictions.

But are these explanation methods fair? If an explanation method provides better approximations for men than for women, or for white people than for Black people, it may encourage users to trust the model’s predictions for some people but not for others.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

1 mois ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

1 mois ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

1 mois ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 mois ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

2 mois ago

LES DIFFÉRENCES ENTRE ISO 27001 ET TISAX®

TISAX® et ISO 27001 sont toutes deux des normes dédiées à la sécurité de l’information. Bien qu’elles aient…

2 mois ago

This website uses cookies.