photo ai
Photo editing app Lensa grew massively popular over the last week as social media has become flooded with people posting AI-generated selfies from the app’s latest feature.
For $3.99, Lensa users can upload 10-20 images of themselves and then receive 50 selfies generated by the app’s artificial intelligence in a variety of art styles.
But, before you slam the purchase button, a word of warning: Lensa’s privacy policy and terms of use stipulate that the images users submit to generate their selfies, or rather the “Face Data,” can be used by Prisma AI, the company behind Lensa, to further train the AI’s neural network.
An artificial neural network like the one used by Lensa, or the popular text-to-image generator Dall-E 2, studies vast quantitites of data to learn how to create better and better results. To be able to convert simple sentences into surprisingly well-crafted images, Dall-E 2 was trained on hundreds of millions of images to learn the association between different words and different visual characteristics. Similarly, Lensa’s neural network is continuously learning how to more accurately portray faces.
This face data, which includes position, orientation, and face topology, is harvested using Apple’s TrueDepth API — the same face-tracking capabilities that allow iPhone users to unlock their phones with their face just by looking at their screen. It is this face data that is fed into the neural network. However, this face data is not sold to third parties.
For writer and former model Maya Kotomori, who recently uploaded her own Lensa selfies, it’s unclear whether or not these AI-assisted generators are problematic or not. In the artistic community, apps like Dall-E 2 have been controversial as artists worry both about their income as illustrators being affected and the possibility their work is being stolen to feed the neural networks. In many cases, users have used AI generators to spit out images in particular artists’ style, without their consent or payment.
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.