Machine learning

Machine Learning Enhances Human Speech Recognition

Humans communicate preferably through speech using the same language. Speech recognition can be defined as the ability to understand the spoken words of the person speaking. Speech recognition is one of the fastest-growing engineering technologies. It has several applications in different areas and provides many potential benefits. A lot of people are unable to communicate due to language barriers.

Hearing loss is a rapidly growing area of scientific research as the number of baby boomers dealing with hearing loss continues to increase as they age. To understand how hearing loss impacts people, researchers study people’s ability to recognise speech. It is more difficult for people to recognise human speech if there is reverberation, some hearing impairment, or significant background noise, such as traffic noise or multiple speakers.

As a result, hearing aid algorithms are often used to improve human speech recognition. To evaluate such algorithms, researchers perform experiments that aim to determine the signal-to-noise ratio at which a specific number of words (commonly 50%) are recognised. These tests, however, are time- and cost-intensive. The research was published in The Journal of the Acoustical Society of America.

The novelty of the model is that it provides good predictions for hearing-impaired listeners for noise types with very different complexity and shows both low errors and high correlations with the measured data. The researchers calculated how many words per sentence a listener understands using automatic speech recognition (ASR). Most people are familiar with ASR through speech recognition tools.

The study consisted of eight normal-hearing and 20 hearing-impaired listeners who were exposed to a variety of complex noises that mask speech. The hearing-impaired listeners were categorised into three groups with different levels of age-related hearing loss.

The model allowed the researchers to predict the human speech recognition performance of hearing-impaired listeners with different degrees of hearing loss for a variety of noise maskers with increasing complexity in temporal modulation and similarity to real speech. The possible hearing loss of a person could be considered individually.

The model created predictions for single-ear hearing. Going forward, the researchers will develop a binaural model since understanding speech is impacted by two-ear hearing. In addition to predicting speech intelligibility, the model could also potentially be used to predict listening effort or speech quality as these topics are very related.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

3 jours ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

2 semaines ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

2 semaines ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

2 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

2 semaines ago

This website uses cookies.