cybersécurité

Mastercard utilise l’IA générative pour détecter les fraudes financières

Technologie : Le modèle comprend un réseau neuronal et un système « Decision Intelligence Pro » conçu par l’équipe de Mastercard. Le système est capable de déterminer en temps réel si une transaction suspecte sur le réseau est légitime ou non

Mastercard lance un modèle d’intelligence artificielle (IA) générative capable de détecter les fraudes financières en temps réel. Mastercard a déclaré avoir investi environ 7 milliards de dollars au cours des cinq dernières années pour développer l’IA.

Le modèle comprend un réseau neuronal et un système « Decision Intelligence Pro » conçu par l’équipe de Mastercard chargée de la cybersécurité et de la prévention des fraudes. Le système est capable de déterminer en temps réel si une transaction suspecte sur le réseau est légitime ou non.

Le modèle a été formé à partir de données provenant d’environ 126 milliards de transactions effectuées chaque année sur les réseaux de cartes de l’entreprise.

Visualiser en temps réel les données des transactions

Il peut visualiser en temps réel toutes les données relatives aux transactions qui entrent dans le système financier. Il identifie les transactions pertinentes principalement grâce à l’historique des visites du titulaire de la carte chez le commerçant. Les données sensibles, telles que les informations personnelles, sont masquées.

Le modèle de Mastercard donne un score pour la probabilité d’une transaction frauduleuse. Plus le score est élevé, plus le titulaire de la carte suit le modèle de comportement attendu. Cela signifie que vous avez moins de chances d’être victime d’une fraude financière. Plus le score est bas, plus vous avez de chances d’être victime d’une fraude financière. Le modèle peut analyser cela en 0,05 seconde.

« Lors de tests internes, le modèle a augmenté les taux de détection des fraudes pour les institutions financières de 20 % en moyenne », a déclaré Ajay Bhalla, président de la division Cyber and Intelligence de Mastercard « et dans certaines situations, le taux de détection était 300 % plus élevé qu’auparavant ».

« Une fois que ce modèle sera commercialisé, nous serons en mesure de prédire les futurs types de fraude qui sont actuellement inconnus dans l’écosystème financier, a déclaré M. Bala, ce qui nous permettra de vraiment comprendre les schémas de fraude dans l’écosystème mondial ».

Source

Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

4 jours ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

2 semaines ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

2 semaines ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

2 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

2 semaines ago

This website uses cookies.