With their millions and billions of numerical parameters, deep learning models can do many things: detect objects in photos, recognize speech, generate text—and hide malware. Neural networks can embed malicious payloads without triggering anti-malware software, researchers at the University of California, San Diego, and the University of Illinois have found.
Their malware-hiding technique, EvilModel, sheds light on the security concerns of deep learning, which has become a hot topic of discussion in machine learning and cybersecurity conferences. As deep learning becomes ingrained in applications we use every day, the security community needs to think about new ways to protect users against their emerging threats.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.