Deep learning

New Method to Automatically Generate Radar-Camera Datasets for Deep Learning Applications

In recent years, scientists have been working on a variety of systems that can identify and traverse items in their environment. Most of these systems rely on deep learning and machine learning algorithms that use radar and necessitate a large amount of labeled training data.

Despite the enormous advantages of radars over optical sensors, there are currently very few image datasets available for training that comprise data obtained using radar sensors. Labeling radar data is a time- and labor-intensive procedure that is often carried out by manually comparing it to a parallelly acquired image data stream. Furthermore, many open-source radar datasets available are difficult to use for various user applications.

To overcome the issue of data scarcity, University of Arizona researchers have devised a new method for automatically generating datasets with tagged radar data-camera images. It labels the radar point cloud using an object recognition algorithm (YOLO) on the camera image stream and an association technique (the Hungarian algorithm).

The approach works on the idea of using an image-based object detection framework to automatically label the radar data instead of manually looking at images if the camera and radar were staring at the same item.

The approach’s co-calibration, grouping, and association capabilities are three distinguishing properties. The method co-calibrates a radar and its camera to identify how the location of an object detected by the radar would translate into digital pixels on a camera.

They employed a density-based clustering scheme to detect and remove noise/stray radar returns and to segregate radar signals into clusters to discriminate between separate objects.

They employed a Hungarian intra-frame and inter-frame method for the association. In a single frame, the intra-frame HA linked YOLO predictions to co-calibrated radar clusters. On the other hand, the inter-frame HA linked radar clusters for the same object across frames to account for labeling radar data in frames even when optical sensors failed intermittently.

Instead of simply employing the point-cloud distribution or just the micro-doppler data, they suggest using an effective 12-dimensional radar feature vector.

In the future, this approach could aid in the automated production of radar-camera and radar-only datasets. Furthermore, the researchers looked at both proof-of-concept classification techniques based on a radar-camera sensor-fusion and data acquired only by radars.

The team believes that their work is to quickly analyze and train deep-learning models for classifying or tracking objects utilizing sensor fusion. These models can improve the performance of a wide range of robotic systems, from autonomous automobiles to small robots.

Paper: https://ieeexplore.ieee.org/document/9690006

Reference: https://techxplore.com/news/2022-02-method-automatically-radar-camera-datasets-deep.html

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

2 jours ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

3 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

4 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

4 jours ago

Vulnérabilités des objets connectés : comment protéger efficacement son réseau en 2025

📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…

7 jours ago

Cybersécurité : comment détecter, réagir et se protéger efficacement en 2025

Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…

7 jours ago

This website uses cookies.