Intelligence Artificielle

New standard to make AI processing more efficient

In pursuit of faster and more efficient AI system development, Intel, Arm and Nvidia today published a draft specification for what they refer to as a common interchange format for AI. While voluntary, the proposed “8-bit floating point (FP8)” standard, they say, has the potential to accelerate AI development by optimizing hardware memory usage and work for both AI training (i.e., engineering AI systems) and inference (running the systems).

When developing an AI system, data scientists are faced with key engineering choices beyond simply collecting data to train the system. One is selecting a format to represent the weights of the system — weights being the factors learned from the training data that influence the system’s predictions. Weights are what enable a system like GPT-3 to generate whole paragraphs from a sentence-long prompt, for example, or DALL-E 2 to create photorealistic portraits from a caption.

Common formats include half-precision floating point, or FP16, which uses 16 bits to represent the weights of the system, and single precision (FP32), which uses 32 bits. Half-precision and lower reduce the amount of memory required to train and run an AI system while speeding up computations and even reducing bandwidth and power usage. But they sacrifice some accuracy to achieve those gains; after all, 16 bits is less to work with than 32.

Many in the industry — including Intel, Arm and Nvidia — are coalescing around FP8 (8 bits) as the sweet spot, however. In a blog post, Nvidia director of product marketing Shar Narasimhan notes that the aforementioned proposed format, which is FP8, shows “comparable accuracy” to 16-bit precisions across use cases including computer vision and image-generating systems while delivering “significant” speedups.

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

16 heures ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

17 heures ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

17 heures ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

2 jours ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

2 jours ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

2 jours ago

This website uses cookies.