Every large financial services company is pursuing AI initiatives in 2022. Some are in the earliest stages. Others have been investing in the technology for years. Regardless, all recognize that natural-language processing (NLP) is a foundational capability for their long-term AI business goals. Unfortunately NLP is still an emerging technology, and the best options for deploying it are not immediately obvious.
In this blog post, I’ll put aside the technobabble and address the key considerations for applying NLP in financial services companies.
Confused about NLP? You’re not alone, and it isn’t your fault. Do a Google search on the topic and you will become even more confused.
Wikipedia defines NLP as “a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.” The article then describes a bewildering array of common NLP tasks that have little relevance to how your company actually works.
Skip the Googling and dig into a few resources we’ve created for business leaders like you:
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.