Every large financial services company is pursuing AI initiatives in 2022. Some are in the earliest stages. Others have been investing in the technology for years. Regardless, all recognize that natural-language processing (NLP) is a foundational capability for their long-term AI business goals. Unfortunately NLP is still an emerging technology, and the best options for deploying it are not immediately obvious.
In this blog post, I’ll put aside the technobabble and address the key considerations for applying NLP in financial services companies.
Confused about NLP? You’re not alone, and it isn’t your fault. Do a Google search on the topic and you will become even more confused.
Wikipedia defines NLP as “a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.” The article then describes a bewildering array of common NLP tasks that have little relevance to how your company actually works.
Skip the Googling and dig into a few resources we’ve created for business leaders like you:
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.