Intelligence Artificielle

Peut-on corriger les biais des algorithmes ?

Les algorithmes sont pleins de biais, notamment sociaux, plus ou moins inquiétants. Mais qu’implique le fait de vouloir les corriger ?

Un algorithme qui confond des manches à balais avec des armes à feu, un autre qui modère les images représentant des femmes plus sévèrement que celles représentant des hommes, un troisième qui, intégré à des logiciels utilisés par la police américaine, conduit à mettre trois hommes, tous afro-américains, en garde à vue pour des faits qu’ils n’ont pas commis…

ChatGPT lui-même a été aperçu relayant des clichés sexistes ou racistes… Bref, les cas de biais algorithmiques aux effets inquiétants sur la société se multiplient. Et malgré la conscience croissante du problème, la multiplication de systèmes dits d’« intelligence artificielle » (IA) ne montre pas le moindre signe de ralentissement.

Quels sont les outils à disposition, dans ce cas, pour éviter que ces machines ne nuisent à différents segments de la population ? Et dans quelle mesure fonctionnent-ils ? « Débiaiser les modèles algorithmiques, c’est un champ de recherche entier » pointe Amélie Cordier, directrice scientifique de Once for All – Attestation Légale, une société spécialisée dans l’offre de services de conformité administrative et pour lequel Amélie Cordier travaille avec le laboratoire de recherche LIRIS du CNRS.

Si l’on prend l’angle des dangers sociaux, celui-ci recroise, souvent, le domaine de la recherche en éthique de l’IA. Mais les biais discriminants sont loin d’être la seule problématique que posent ces machines.

Biais statistiques, biais cognitifs, biais discriminatoires

Interrogée sur la question, la co-autrice du rapport « if AI is the problem, is debiasing the solution ? » publié par l’ONG European Digital Rights (EDRi) en septembre 2021, Agathe Balayn, pointe très vite une problématique d’ordre linguistique. Quand on parle de biais pour qualifier certaines problématiques algorithmiques, on utilise un terme dont la variété de sens ne facilite pas la compréhension entre experts en informatique, en sciences sociales, grand public, et tout autre interlocuteur potentiellement intéressé.

Certains y entendent la mention de biais cognitifs, ces raccourcis de pensée qui nous permettent de réagir vite, mais nous font quelquefois commettre des erreurs. D’autres comprennent biais discriminants : « Je préfère parler de préjudices [harms, en anglais], pour que ce soit plus clair », précise Agathe Balayn. Car, en bonne informaticienne, celle-ci entend surtout le terme biais au sens d’erreur statistique.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

2 jours ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

3 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

4 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

4 jours ago

Vulnérabilités des objets connectés : comment protéger efficacement son réseau en 2025

📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…

7 jours ago

Cybersécurité : comment détecter, réagir et se protéger efficacement en 2025

Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…

7 jours ago

This website uses cookies.