Intelligence Artificielle

Peut-on corriger les biais des algorithmes ?

Les algorithmes sont pleins de biais, notamment sociaux, plus ou moins inquiétants. Mais qu’implique le fait de vouloir les corriger ?

Un algorithme qui confond des manches à balais avec des armes à feu, un autre qui modère les images représentant des femmes plus sévèrement que celles représentant des hommes, un troisième qui, intégré à des logiciels utilisés par la police américaine, conduit à mettre trois hommes, tous afro-américains, en garde à vue pour des faits qu’ils n’ont pas commis…

ChatGPT lui-même a été aperçu relayant des clichés sexistes ou racistes… Bref, les cas de biais algorithmiques aux effets inquiétants sur la société se multiplient. Et malgré la conscience croissante du problème, la multiplication de systèmes dits d’« intelligence artificielle » (IA) ne montre pas le moindre signe de ralentissement.

Quels sont les outils à disposition, dans ce cas, pour éviter que ces machines ne nuisent à différents segments de la population ? Et dans quelle mesure fonctionnent-ils ? « Débiaiser les modèles algorithmiques, c’est un champ de recherche entier » pointe Amélie Cordier, directrice scientifique de Once for All – Attestation Légale, une société spécialisée dans l’offre de services de conformité administrative et pour lequel Amélie Cordier travaille avec le laboratoire de recherche LIRIS du CNRS.

Si l’on prend l’angle des dangers sociaux, celui-ci recroise, souvent, le domaine de la recherche en éthique de l’IA. Mais les biais discriminants sont loin d’être la seule problématique que posent ces machines.

Biais statistiques, biais cognitifs, biais discriminatoires

Interrogée sur la question, la co-autrice du rapport « if AI is the problem, is debiasing the solution ? » publié par l’ONG European Digital Rights (EDRi) en septembre 2021, Agathe Balayn, pointe très vite une problématique d’ordre linguistique. Quand on parle de biais pour qualifier certaines problématiques algorithmiques, on utilise un terme dont la variété de sens ne facilite pas la compréhension entre experts en informatique, en sciences sociales, grand public, et tout autre interlocuteur potentiellement intéressé.

Certains y entendent la mention de biais cognitifs, ces raccourcis de pensée qui nous permettent de réagir vite, mais nous font quelquefois commettre des erreurs. D’autres comprennent biais discriminants : « Je préfère parler de préjudices [harms, en anglais], pour que ce soit plus clair », précise Agathe Balayn. Car, en bonne informaticienne, celle-ci entend surtout le terme biais au sens d’erreur statistique.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

2 semaines ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

3 semaines ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

3 semaines ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

4 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

4 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

4 semaines ago

This website uses cookies.