Machine learning

Quantum Complexity Tamed by Machine Learning

If scientists understood exactly how electrons act in molecules, they’d be able to predict the behavior of everything from experimental drugs to high-temperature superconductors. Following decades of physics-based insights, artificial intelligence systems are taking the next leap.

In 2018, climate simulations were the third-largest use of computing cycles at a leading U.S. supercomputing cluster. The study of quarks and other subatomic particles came in second.

Topping the list was the most heavily cited idea in the physical sciences — though few have ever heard of it.

“It’s ridiculously important,” said Kieron Burke, a theoretical chemist at the University of California, Irvine. “It’s one of the most important things in science.”

Science’s best-kept secret goes by the name of density functional theory (DFT), and it is the chief method physicists and chemists use to understand just about anything more complicated than a hydrogen atom. For decades, researchers have harnessed DFT’s abilities to predict everything from the taste of coffee to the consistency of Jupiter’s core.

DFT gives scientists a powerful shortcut for predicting where electrons will go and, by extension, how atoms, molecules and other objects clothed in electrons will act. Physicists and chemists have long drawn on deep physical expertise to make their equations better reflect the intricate dance common to all electrons. But recently, new tools designed by neural networks are rivaling and, in some ways, outperforming their hand-crafted forerunners. Some researchers now believe machine learning could help researchers take larger and faster steps toward a master electron equation that would unlock the secrets of novel drugs, superconductivity and exotic materials.

 

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Panorama des menaces cyber en 2025

Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…

1 jour ago

Risques émergents de l’Intelligence Artificielle

Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…

3 jours ago

Cybersécurité et IA en santé : enjeux stratégiques pour les DSI d’établissements de soins

La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…

3 jours ago

Sécurité des PME : échapper à l’enfer des questionnaires de sécurité

En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…

6 jours ago

Votre entreprise a été cyberattaquée : pourquoi la technologie seule ne vous sauvera pas

Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…

6 jours ago

Mieux connaitre vos faiblesses pour mieux vous protéger

"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…

6 jours ago

This website uses cookies.