A study published in The Lancet Digital Health led by UNC School of Medicine’s Emily R. Pfaff, PhD, shows how the National COVID Cohort Collaborative used XGBoost machine learning models to better define long COVID and identify potential long-COVID patients with a high degree of accuracy.
Newswise — CHAPEL HILL, NC – Clinical scientists used machine learning (ML) models to explore de-identified electronic health record (EHR) data in the National COVID Cohort Collaborative (N3C), a National Institutes of Health-funded national clinical database, to help discern characteristics of people with long-COVID and factors that may help identify such patients using data from medical records.
The findings, published in The Lancet Digital Health, have the potential to improve clinical research on long COVID and inform a more standardized care regimen for the condition.
“Characterizing, diagnosing, treating and caring for long-COVID patients has proven to be a challenge due to the list of characteristic symptoms continuously evolving over time,” said first author Emily R. Pfaff, PhD, assistant professor in the Division of Endocrinology and Metabolism at the UNC School of Medicine. “We needed to gain a better understanding of the complexities of long-COVID, and for that it made sense to take advantage of modern data analysis tools and a unique big data resource like N3C, where many features of long COVID are represented.”
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
TISAX® et ISO 27001 sont toutes deux des normes dédiées à la sécurité de l’information. Bien qu’elles aient…
This website uses cookies.