Intelligence Artificielle

‘Simple’ AI Can Anticipate Bank Managers’ Loan Decisions to Over 95% Accuracy

A new research project has found that the discretionary decisions made by human bank managers can be replicated by machine learning systems to an accuracy of more than 95%.

Using the same data available to bank managers in a privileged dataset, the best-performing algorithm in the test was a Random Forest implementation – a fairly simple approach that’s twenty years old, but which still outperformed a neural network when attempting to mimic the behavior of human bank managers formulating final decisions about loans.

The Random Forest algorithm, one of four put through their paces for the project, achieves high human-equivalent scoring vs. performance of bank managers, despite the relative simplicity of the algorithm. Source: Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?, https://arxiv.org/pdf/2202.04218.pdf

The researchers, who had access to a proprietary dataset of 37,449 loan ratings across 4,414 unique customers at ‘a large commercial bank’, suggest at various points in the preprint paper that the automated data analysis that managers are given to make their decision has now become so accurate that bank managers rarely deviate from it, potentially signifying that bank managers’ part in the loan approval process chiefly consists of retaining someone to fire in the event of a loan default.

The paper states:

‘From a practical perspective it is worth noting that our results may indicate that the bank could process loans faster and cheaper in the absence of human loan managers with very comparable results. While managers naturally perform a variety of tasks, it is hard to argue that they are essential for this particular task and a relatively simple algorithm can perform just as well.

‘It is also important to note that with additional data and computational power these algorithms can be further improved as well.’

The paper is titled Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?, and comes from the  Department of Economics and Department of Statistics at UoC Irvine and the Bank of Communications BBM in Brazil.

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

4 semaines ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

4 semaines ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

4 semaines ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

4 semaines ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

4 semaines ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

4 semaines ago

This website uses cookies.