nlp
There is no shortage of tools today that can help you through the steps of natural language processing, but if you want to get a handle on the basics this is a good place to start. Read about the ABCs of NLP, all the way from A to Z.
There is no shortage of text data available today. Vast amounts of text are created each and every day, with this data ranging from fully structured to semi-structured to fully unstructured.
What can we do with this text? Well, quite a bit, actually; depending on exactly what your objectives are, there are 2 intricately related yet differentiated umbrellas of tasks which can be exploited in order to leverage the availability of all of this data.
Let’s start with some definitions.
As you may be able to tell from the above, the exact boundaries of these 2 concepts are not well-defined and agreed-upon, and bleed into one another to varying degrees, depending on the practitioners and researchers with whom one would discuss such matters. I find it easiest to differentiate by degree of insight. If raw text is data, then text mining can extract information, while NLP extracts knowledge (see the Pyramid of Understanding below). Syntax versus semantics, if you will.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.