ai simulation
Simulation has emerged as a critical technology for helping businesses shorten time-to-market and lowering design costs. Engineers and researchers use simulation for a variety of applications, including:
Many organizations are improving their simulation capabilities by incorporating artificial intelligence (AI) into their model-based design. Historically, these two fields have been separate, but create significant value for engineers and researchers when used together effectively. These technologies’ strengths and weaknesses are perfectly aligned to help businesses solve three primary challenges.
Simulation models can synthesize real-world data that is difficult or expensive to collect into good, clean and cataloged data. While most AI models run using fixed parameter values, they are constantly exposed to new data that may not be captured in the training set. If unnoticed, these models will generate inaccurate insights or fail outright, causing engineers to spend hours trying to determine why the model is not working.
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.