ai simulation
Simulation has emerged as a critical technology for helping businesses shorten time-to-market and lowering design costs. Engineers and researchers use simulation for a variety of applications, including:
Many organizations are improving their simulation capabilities by incorporating artificial intelligence (AI) into their model-based design. Historically, these two fields have been separate, but create significant value for engineers and researchers when used together effectively. These technologies’ strengths and weaknesses are perfectly aligned to help businesses solve three primary challenges.
Simulation models can synthesize real-world data that is difficult or expensive to collect into good, clean and cataloged data. While most AI models run using fixed parameter values, they are constantly exposed to new data that may not be captured in the training set. If unnoticed, these models will generate inaccurate insights or fail outright, causing engineers to spend hours trying to determine why the model is not working.
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
TISAX® et ISO 27001 sont toutes deux des normes dédiées à la sécurité de l’information. Bien qu’elles aient…
This website uses cookies.