MLOps refers to the operation of machine learning in production. It combines DevOps with lifecycle tracking, reusable infrastructure, and reproducible environments to operationalize machine learning at scale across an entire organization. The term MLOps was first coined by Google in their paper on Machine Learning Operations, although it does have roots in software operations. Google’s goal with this paper was to introduce a new approach to developing AI products that is more agile, collaborative, and customer-centric. MLOps is an advanced form of traditional DevOps and ML/AI that mostly focuses on automation to design, manage, and optimize ML pipelines.
MLOps is based on DevOps, which is a modern practice for building, delivering, and operating corporate applications effectively. DevOps began a decade ago as a method for rival tribes of software developers (the Devs) and IT operations teams (the Ops) to interact.
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.