The MachineLearning Lifecycle
There are no standard practices for building and managing machine learning (ML) applications. As a result, machine learning projects are not well organized, lack reproducibility, and are prone to complete failure in the long run. We need a model that helps us maintain quality, sustainability, robustness, and cost management throughout the ML life cycle.
The Cross-Industry Standard Process for the development of Machine Learning applications with Quality assurance methodology (CRISP-ML(Q)) is an upgraded version of CRISP-DM to ensure quality ML products.
The CRISP-ML(Q) has six individual phases:
These phases require constant iteration and exploration for building better solutions. Even though there is an order in a framework, the output of the later phase can determine whether we have to re-examine the previous phase or not.
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.